simulate
objectR/summarise.R
get_pdf.Rd
Calculate the probability density of a summary
statistic across all iterations of a
simulate
object
get_pdf(sims, subset = NULL, times = NULL, n = 100, fn = min, ...)
an object returned from simulate
integer
vector denoting the population classes
to include in calculation of population abundance. Defaults to
all classes
integer
vector specifying generations to
include in calculation of extinction risk. Defaults to all
simulated generations
integer
specifying number of threshold values
to use in default case when threshold
is not specified.
Defaults to 100
function to apply to each iteration. Defaults to min
additional arguments passed to fn
get_pdf
and get_cdf
are faster and more
general alternatives to the risk_curve
function.
get_pdf
can be used to calculate the probability
distribution of any summary statistic. For example, the
probability distribution of the minimum population size
is the density-based equivalent of a risk curve (the function
get_cdf
can be used to get the true equivalent).
Summary statistics for get_pdf
are extracted from
a simulate
object and represent the distribution
of that statistic over all replicate trajectories at any time step
within a set period. Abundances can be specified for all
population classes or for a subset of classes.
# define a basic population
nstage <- 5
popmat <- matrix(0, nrow = nstage, ncol = nstage)
popmat[reproduction(popmat, dims = 4:5)] <- c(10, 20)
popmat[transition(popmat)] <- c(0.25, 0.3, 0.5, 0.65)
# define a dynamics object
dyn <- dynamics(popmat)
# simulate with the default updater
sims <- simulate(dyn, nsim = 1000)
# calculate distribution of minimum population sizes (default)
get_pdf(sims)
#> prob value
#> 1 3.619306e-06 13.42654
#> 2 1.006103e-05 13.89319
#> 3 2.473658e-05 14.35985
#> 4 5.396588e-05 14.82651
#> 5 1.048830e-04 15.29317
#> 6 1.820151e-04 15.75983
#> 7 2.823511e-04 16.22648
#> 8 3.933693e-04 16.69314
#> 9 4.952471e-04 17.15980
#> 10 5.690326e-04 17.62646
#> 11 6.089686e-04 18.09311
#> 12 6.320411e-04 18.55977
#> 13 6.781094e-04 19.02643
#> 14 8.010826e-04 19.49309
#> 15 1.055591e-03 19.95975
#> 16 1.481745e-03 20.42640
#> 17 2.102362e-03 20.89306
#> 18 2.928954e-03 21.35972
#> 19 3.967355e-03 21.82638
#> 20 5.222865e-03 22.29303
#> 21 6.695465e-03 22.75969
#> 22 8.386771e-03 23.22635
#> 23 1.029677e-02 23.69301
#> 24 1.241054e-02 24.15967
#> 25 1.468075e-02 24.62632
#> 26 1.702071e-02 25.09298
#> 27 1.934312e-02 25.55964
#> 28 2.160889e-02 26.02630
#> 29 2.385665e-02 26.49295
#> 30 2.618196e-02 26.95961
#> 31 2.867478e-02 27.42627
#> 32 3.137779e-02 27.89293
#> 33 3.428917e-02 28.35959
#> 34 3.738582e-02 28.82624
#> 35 4.061953e-02 29.29290
#> 36 4.388688e-02 29.75956
#> 37 4.702526e-02 30.22622
#> 38 4.986589e-02 30.69287
#> 39 5.231909e-02 31.15953
#> 40 5.442810e-02 31.62619
#> 41 5.632359e-02 32.09285
#> 42 5.811799e-02 32.55951
#> 43 5.981857e-02 33.02616
#> 44 6.129908e-02 33.49282
#> 45 6.236076e-02 33.95948
#> 46 6.285553e-02 34.42614
#> 47 6.281199e-02 34.89279
#> 48 6.248197e-02 35.35945
#> 49 6.223971e-02 35.82611
#> 50 6.234941e-02 36.29277
#> 51 6.277329e-02 36.75943
#> 52 6.316487e-02 37.22608
#> 53 6.304108e-02 37.69274
#> 54 6.201074e-02 38.15940
#> 55 5.997099e-02 38.62606
#> 56 5.709377e-02 39.09271
#> 57 5.372771e-02 39.55937
#> 58 5.024207e-02 40.02603
#> 59 4.689435e-02 40.49269
#> 60 4.376998e-02 40.95935
#> 61 4.082943e-02 41.42600
#> 62 3.799418e-02 41.89266
#> 63 3.521067e-02 42.35932
#> 64 3.246090e-02 42.82598
#> 65 2.973873e-02 43.29263
#> 66 2.703265e-02 43.75929
#> 67 2.433387e-02 44.22595
#> 68 2.165676e-02 44.69261
#> 69 1.904584e-02 45.15927
#> 70 1.655947e-02 45.62592
#> 71 1.424812e-02 46.09258
#> 72 1.214370e-02 46.55924
#> 73 1.026443e-02 47.02590
#> 74 8.611871e-03 47.49255
#> 75 7.171302e-03 47.95921
#> 76 5.909109e-03 48.42587
#> 77 4.784412e-03 48.89253
#> 78 3.774240e-03 49.35919
#> 79 2.887644e-03 49.82584
#> 80 2.162457e-03 50.29250
#> 81 1.635334e-03 50.75916
#> 82 1.310150e-03 51.22582
#> 83 1.144000e-03 51.69247
#> 84 1.058877e-03 52.15913
#> 85 9.814818e-04 52.62579
#> 86 8.721284e-04 53.09245
#> 87 7.338896e-04 53.55910
#> 88 5.971697e-04 54.02576
#> 89 4.908941e-04 54.49242
#> 90 4.227405e-04 54.95908
#> 91 3.786016e-04 55.42574
#> 92 3.363003e-04 55.89239
#> 93 2.814734e-04 56.35905
#> 94 2.146681e-04 56.82571
#> 95 1.465066e-04 57.29237
#> 96 8.865079e-05 57.75902
#> 97 4.744650e-05 58.22568
#> 98 2.243184e-05 58.69234
#> 99 9.345547e-06 59.15900
#> 100 3.424548e-06 59.62566
# calculate distribution of maximum population sizes
get_pdf(sims, fn = max)
#> prob value
#> 1 2.812120e-07 69.52868
#> 2 7.542976e-07 75.06042
#> 3 1.789267e-06 80.59217
#> 4 3.762210e-06 86.12391
#> 5 7.030003e-06 91.65565
#> 6 1.171835e-05 97.18740
#> 7 1.752030e-05 102.71914
#> 8 2.372331e-05 108.25089
#> 9 2.964167e-05 113.78263
#> 10 3.517732e-05 119.31437
#> 11 4.117153e-05 124.84612
#> 12 4.932534e-05 130.37786
#> 13 6.174213e-05 135.90960
#> 14 8.088679e-05 141.44135
#> 15 1.100283e-04 146.97309
#> 16 1.536702e-04 152.50484
#> 17 2.173102e-04 158.03658
#> 18 3.054456e-04 163.56832
#> 19 4.198663e-04 169.10007
#> 20 5.589621e-04 174.63181
#> 21 7.186760e-04 180.16356
#> 22 8.950775e-04 185.69530
#> 23 1.086955e-03 191.22704
#> 24 1.296902e-03 196.75879
#> 25 1.529692e-03 202.29053
#> 26 1.788059e-03 207.82228
#> 27 2.068731e-03 213.35402
#> 28 2.361630e-03 218.88576
#> 29 2.653822e-03 224.41751
#> 30 2.936346e-03 229.94925
#> 31 3.208328e-03 235.48099
#> 32 3.476367e-03 241.01274
#> 33 3.749589e-03 246.54448
#> 34 4.032840e-03 252.07623
#> 35 4.322531e-03 257.60797
#> 36 4.606924e-03 263.13971
#> 37 4.870607e-03 268.67146
#> 38 5.100302e-03 274.20320
#> 39 5.289363e-03 279.73495
#> 40 5.436328e-03 285.26669
#> 41 5.539830e-03 290.79843
#> 42 5.595064e-03 296.33018
#> 43 5.595009e-03 301.86192
#> 44 5.537336e-03 307.39366
#> 45 5.431449e-03 312.92541
#> 46 5.297868e-03 318.45715
#> 47 5.161313e-03 323.98890
#> 48 5.040066e-03 329.52064
#> 49 4.938676e-03 335.05238
#> 50 4.847484e-03 340.58413
#> 51 4.749812e-03 346.11587
#> 52 4.629853e-03 351.64762
#> 53 4.478466e-03 357.17936
#> 54 4.294489e-03 362.71110
#> 55 4.083150e-03 368.24285
#> 56 3.851023e-03 373.77459
#> 57 3.604002e-03 379.30634
#> 58 3.348453e-03 384.83808
#> 59 3.093408e-03 390.36982
#> 60 2.850024e-03 395.90157
#> 61 2.627192e-03 401.43331
#> 62 2.427645e-03 406.96505
#> 63 2.247784e-03 412.49680
#> 64 2.081300e-03 418.02854
#> 65 1.922758e-03 423.56029
#> 66 1.768420e-03 429.09203
#> 67 1.615081e-03 434.62377
#> 68 1.459540e-03 440.15552
#> 69 1.300025e-03 445.68726
#> 70 1.137807e-03 451.21901
#> 71 9.771266e-04 456.75075
#> 72 8.232890e-04 462.28249
#> 73 6.811009e-04 467.81424
#> 74 5.544238e-04 473.34598
#> 75 4.466380e-04 478.87772
#> 76 3.601801e-04 484.40947
#> 77 2.962768e-04 489.94121
#> 78 2.540621e-04 495.47296
#> 79 2.300228e-04 501.00470
#> 80 2.183286e-04 506.53644
#> 81 2.119438e-04 512.06819
#> 82 2.048417e-04 517.59993
#> 83 1.937236e-04 523.13168
#> 84 1.784489e-04 528.66342
#> 85 1.610544e-04 534.19516
#> 86 1.440558e-04 539.72691
#> 87 1.290200e-04 545.25865
#> 88 1.161718e-04 550.79040
#> 89 1.046997e-04 556.32214
#> 90 9.328741e-05 561.85388
#> 91 8.069047e-05 567.38563
#> 92 6.641193e-05 572.91737
#> 93 5.103781e-05 578.44911
#> 94 3.604931e-05 583.98086
#> 95 2.311755e-05 589.51260
#> 96 1.336426e-05 595.04435
#> 97 6.925938e-06 600.57609
#> 98 3.202797e-06 606.10783
#> 99 1.317089e-06 611.63958
#> 100 4.801634e-07 617.17132
# calculate distribution of the 90th percentile of
# population sizes
get_pdf(sims, fn = quantile, prob = 0.9)
#> prob value
#> 1 8.338539e-07 58.70451
#> 2 2.368871e-06 61.12277
#> 3 5.978467e-06 63.54103
#> 4 1.327331e-05 65.95929
#> 5 2.598623e-05 68.37755
#> 6 4.494675e-05 70.79581
#> 7 6.881904e-05 73.21406
#> 8 9.345452e-05 75.63232
#> 9 1.133648e-04 78.05058
#> 10 1.250825e-04 80.46884
#> 11 1.308557e-04 82.88710
#> 12 1.405884e-04 85.30536
#> 13 1.697693e-04 87.72362
#> 14 2.337830e-04 90.14188
#> 15 3.417926e-04 92.56014
#> 16 4.933181e-04 94.97840
#> 17 6.803766e-04 97.39666
#> 18 8.946832e-04 99.81492
#> 19 1.137117e-03 102.23318
#> 20 1.419725e-03 104.65144
#> 21 1.760307e-03 107.06970
#> 22 2.171195e-03 109.48796
#> 23 2.651574e-03 111.90622
#> 24 3.186713e-03 114.32448
#> 25 3.750404e-03 116.74274
#> 26 4.311057e-03 119.16100
#> 27 4.844500e-03 121.57926
#> 28 5.350147e-03 123.99752
#> 29 5.858942e-03 126.41578
#> 30 6.422110e-03 128.83404
#> 31 7.080117e-03 131.25230
#> 32 7.829224e-03 133.67056
#> 33 8.617661e-03 136.08882
#> 34 9.368682e-03 138.50708
#> 35 1.001644e-02 140.92534
#> 36 1.053594e-02 143.34360
#> 37 1.094471e-02 145.76186
#> 38 1.128290e-02 148.18012
#> 39 1.158770e-02 150.59838
#> 40 1.187306e-02 153.01664
#> 41 1.212542e-02 155.43490
#> 42 1.231551e-02 157.85316
#> 43 1.241817e-02 160.27142
#> 44 1.242762e-02 162.68968
#> 45 1.236346e-02 165.10794
#> 46 1.226338e-02 167.52620
#> 47 1.216662e-02 169.94446
#> 48 1.209681e-02 172.36272
#> 49 1.204840e-02 174.78098
#> 50 1.198476e-02 177.19924
#> 51 1.185458e-02 179.61750
#> 52 1.161460e-02 182.03576
#> 53 1.124698e-02 184.45402
#> 54 1.076199e-02 186.87228
#> 55 1.018847e-02 189.29054
#> 56 9.553852e-03 191.70880
#> 57 8.876818e-03 194.12706
#> 58 8.170063e-03 196.54532
#> 59 7.449256e-03 198.96358
#> 60 6.736709e-03 201.38184
#> 61 6.057855e-03 203.80010
#> 62 5.434739e-03 206.21836
#> 63 4.881733e-03 208.63662
#> 64 4.400124e-03 211.05488
#> 65 3.979266e-03 213.47314
#> 66 3.597666e-03 215.89140
#> 67 3.228637e-03 218.30966
#> 68 2.849143e-03 220.72792
#> 69 2.449463e-03 223.14618
#> 70 2.037524e-03 225.56444
#> 71 1.637059e-03 227.98270
#> 72 1.279857e-03 230.40096
#> 73 9.923958e-04 232.81922
#> 74 7.853435e-04 235.23748
#> 75 6.511321e-04 237.65574
#> 76 5.688716e-04 240.07400
#> 77 5.140049e-04 242.49226
#> 78 4.669450e-04 244.91052
#> 79 4.187286e-04 247.32878
#> 80 3.697944e-04 249.74704
#> 81 3.256484e-04 252.16530
#> 82 2.910918e-04 254.58356
#> 83 2.659664e-04 257.00182
#> 84 2.454146e-04 259.42008
#> 85 2.236864e-04 261.83834
#> 86 1.987308e-04 264.25660
#> 87 1.738719e-04 266.67486
#> 88 1.545793e-04 269.09312
#> 89 1.435386e-04 271.51138
#> 90 1.380141e-04 273.92964
#> 91 1.314588e-04 276.34790
#> 92 1.182207e-04 278.76616
#> 93 9.712200e-05 281.18442
#> 94 7.154978e-05 283.60268
#> 95 4.683829e-05 286.02094
#> 96 2.715352e-05 288.43920
#> 97 1.390230e-05 290.85746
#> 98 6.272201e-06 293.27572
#> 99 2.487421e-06 295.69398
#> 100 8.756626e-07 298.11224
# calculate distribution of minimum population sizes
# but ignore first 10 years
get_pdf(sims, fn = max, times = 11:51)
#> prob value
#> 1 5.468625e-07 54.35433
#> 2 1.508920e-06 57.28766
#> 3 3.670129e-06 60.22100
#> 4 7.848915e-06 63.15434
#> 5 1.481094e-05 66.08767
#> 6 2.476450e-05 69.02101
#> 7 3.691066e-05 71.95435
#> 8 4.941441e-05 74.88769
#> 9 6.024668e-05 77.82102
#> 10 6.817935e-05 80.75436
#> 11 7.337488e-05 83.68770
#> 12 7.738651e-05 86.62103
#> 13 8.309968e-05 89.55437
#> 14 9.520340e-05 92.48771
#> 15 1.210157e-04 95.42104
#> 16 1.705716e-04 98.35438
#> 17 2.545349e-04 101.28772
#> 18 3.809238e-04 104.22105
#> 19 5.530623e-04 107.15439
#> 20 7.684578e-04 110.08773
#> 21 1.019785e-03 113.02106
#> 22 1.296343e-03 115.95440
#> 23 1.589529e-03 118.88774
#> 24 1.898015e-03 121.82108
#> 25 2.231191e-03 124.75441
#> 26 2.606908e-03 127.68775
#> 27 3.040756e-03 130.62109
#> 28 3.537037e-03 133.55442
#> 29 4.085148e-03 136.48776
#> 30 4.664059e-03 139.42110
#> 31 5.248799e-03 142.35443
#> 32 5.815869e-03 145.28777
#> 33 6.346298e-03 148.22111
#> 34 6.830331e-03 151.15444
#> 35 7.272364e-03 154.08778
#> 36 7.691371e-03 157.02112
#> 37 8.108475e-03 159.95446
#> 38 8.531481e-03 162.88779
#> 39 8.944906e-03 165.82113
#> 40 9.313048e-03 168.75447
#> 41 9.598998e-03 171.68780
#> 42 9.784720e-03 174.62114
#> 43 9.883691e-03 177.55448
#> 44 9.938044e-03 180.48781
#> 45 1.000118e-02 183.42115
#> 46 1.010985e-02 186.35449
#> 47 1.026269e-02 189.28782
#> 48 1.041361e-02 192.22116
#> 49 1.048477e-02 195.15450
#> 50 1.040342e-02 198.08784
#> 51 1.013980e-02 201.02117
#> 52 9.726796e-03 203.95451
#> 53 9.248715e-03 206.88785
#> 54 8.802249e-03 209.82118
#> 55 8.446473e-03 212.75452
#> 56 8.178648e-03 215.68786
#> 57 7.944732e-03 218.62119
#> 58 7.673461e-03 221.55453
#> 59 7.313747e-03 224.48787
#> 60 6.855162e-03 227.42120
#> 61 6.321968e-03 230.35454
#> 62 5.755593e-03 233.28788
#> 63 5.195825e-03 236.22122
#> 64 4.668122e-03 239.15455
#> 65 4.181137e-03 242.08789
#> 66 3.731695e-03 245.02123
#> 67 3.311395e-03 247.95456
#> 68 2.912326e-03 250.88790
#> 69 2.530679e-03 253.82124
#> 70 2.169040e-03 256.75457
#> 71 1.834997e-03 259.68791
#> 72 1.537589e-03 262.62125
#> 73 1.282243e-03 265.55458
#> 74 1.068099e-03 268.48792
#> 75 8.896158e-04 271.42126
#> 76 7.394947e-04 274.35460
#> 77 6.120913e-04 277.28793
#> 78 5.048341e-04 280.22127
#> 79 4.188586e-04 283.15461
#> 80 3.568559e-04 286.08794
#> 81 3.194895e-04 289.02128
#> 82 3.020905e-04 291.95462
#> 83 2.939356e-04 294.88795
#> 84 2.828176e-04 297.82129
#> 85 2.605816e-04 300.75463
#> 86 2.270087e-04 303.68796
#> 87 1.893151e-04 306.62130
#> 88 1.568549e-04 309.55464
#> 89 1.352012e-04 312.48798
#> 90 1.233638e-04 315.42131
#> 91 1.152902e-04 318.35465
#> 92 1.042875e-04 321.28799
#> 93 8.731552e-05 324.22132
#> 94 6.590703e-05 327.15466
#> 95 4.423974e-05 330.08800
#> 96 2.627588e-05 333.02133
#> 97 1.376335e-05 335.95467
#> 98 6.343125e-06 338.88801
#> 99 2.566277e-06 341.82134
#> 100 9.146720e-07 344.75468